Telegram Group & Telegram Channel
Мы знаем первые 4 истинно случайных числа.
И с натяжкой пятое.
Также мы знаем верна ли гипотеза Гольдбаха.


Но всё это лишь потенциально...

Так, ну нам известно что существует построенная машина Тьюринга, останавливающаяся (переходящая в состояние hlt) если гипотеза Гольдбаха неверна¹. Соответственно, машина должна зацикливаться если гипотеза верна. Стоило бы узнать число шагов, после которого мы сможем точно сказать, остановилась машина, или зациклилась. Как вычислить такое число шагов? Возьмём другую машину Тьюринга, с тем же числом состояний и запустим её на ленте, содержащей только нули. Узнав максимальное число единиц, которое эта машина может написать на ленту и остановится, а не зациклится, мы соответственно сможем и узнать когда машина Тьюринга докажет гипотезу Гольдбаха.

В чём проблема?

Проблема в том, что мы знаем максимально возможное число печатаемых единиц от 0 состояний — это 1. Для 1 — 4, для 2 — 6, для 3 — 13. Для 4х — это возможно 4098, а для 5 состояний это число точно больше 10¹⁸²⁶⁷. Видно, что это число растёт быстрее любой вычислимой функции. Это число можем обозначить как BB(n), где BB— beasy beaver, a n — число состояний машины. BB(a), где а ≥ 5 по определению имеет бесконечную Колмогоровскую сложность, и соответственно эти числа можно назвать истинно случайными!

¹см предыдущий пост и картинку

#выдернуто #нЛВ



tg-me.com/logic_sip/204
Create:
Last Update:

Мы знаем первые 4 истинно случайных числа.
И с натяжкой пятое.
Также мы знаем верна ли гипотеза Гольдбаха.


Но всё это лишь потенциально...

Так, ну нам известно что существует построенная машина Тьюринга, останавливающаяся (переходящая в состояние hlt) если гипотеза Гольдбаха неверна¹. Соответственно, машина должна зацикливаться если гипотеза верна. Стоило бы узнать число шагов, после которого мы сможем точно сказать, остановилась машина, или зациклилась. Как вычислить такое число шагов? Возьмём другую машину Тьюринга, с тем же числом состояний и запустим её на ленте, содержащей только нули. Узнав максимальное число единиц, которое эта машина может написать на ленту и остановится, а не зациклится, мы соответственно сможем и узнать когда машина Тьюринга докажет гипотезу Гольдбаха.

В чём проблема?

Проблема в том, что мы знаем максимально возможное число печатаемых единиц от 0 состояний — это 1. Для 1 — 4, для 2 — 6, для 3 — 13. Для 4х — это возможно 4098, а для 5 состояний это число точно больше 10¹⁸²⁶⁷. Видно, что это число растёт быстрее любой вычислимой функции. Это число можем обозначить как BB(n), где BB— beasy beaver, a n — число состояний машины. BB(a), где а ≥ 5 по определению имеет бесконечную Колмогоровскую сложность, и соответственно эти числа можно назвать истинно случайными!

¹см предыдущий пост и картинку

#выдернуто #нЛВ

BY Финиковый накатайка


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/logic_sip/204

View MORE
Open in Telegram


LOGIC_SIP Telegram Group Telegram | DID YOU KNOW?

Date: |

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

LOGIC_SIP Telegram Group from de


Telegram Финиковый накатайка
FROM USA